A Highly Efficient Addition of Allylic Bromides to Carbonyl Compounds Promoted by Cp₂TiCl₂(cat.)/Sn System

Yu Ding* and Gang Zhao

Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 LingLing Lu, Shanghai 200032, China

Abstract: Aldehydes or ketones reacted with allylic bromides in the presence of $Cp_2TiCl_2(cat.)/Zn$ system at room temperature to give homo-allylic alcohols in high yields.

Allylation of carbonyl compounds is one of the most useful carboncarbon forming reactions in organic synthesis. Various allylic metal reagents have been exploited extensively.¹ Among them Zn-prompted allylation of carbonyl compounds has been improved by means of various efficient preactivation of Zn^{2-4} or powerful solvents.¹ However, these methods need an excess of zinc dust.⁵⁻⁶ Herein, we wish to report a new efficient and convenient allylation method of aldehydes or ketones with allylic bromides promoted by $Cp_2TiCl_2(cat.)/Zn$ system in THF or diethyl ether with high yield and regioselectivity.

General procedure is as follows: To a solution of carbonyl compound (20 mmol) in THF (A.R.20ml) was added allylic bromide(24mmol), Cp_2TiCl_2 (0.2-0.4 mmol), and zinc dust (10-20mmol). The mixture was stirred at r.t. for 2-5 min, the original red suspension turned to green. After 10 min, the unreacted zinc dust was removed by filtration and the filtrate afforded, after the usual work-up, homoallylic alcohols in excellent yields with good regioselectivity.

As shown in Table, the reaction proceeded smoothly. The reaction of substituted allylic bromides took place exclusively at γ -position of the bromides. We found that allylic chloride did not react in the same conditions. The addition was sluggish or did not react at all without

catalyst Cp₂TiCl₂. Chemical outcome of this reaction is quite contrary to TiCl4/Zn system which gave only the coupling product of carbonyl compounds. Table.Allylation of aldehydes or ketones in Cp2TiCl2(cat.)/Zn system. Time(min.) Yield(%)^a,^b Entry Aldehyde/ketone Allylic bromide 1 n-C3H7CHO $CH_2 = CHCH_2Br(1a)$ 3 80 2 i-C₃H₇CHO 1a 3. 90 3 PhCHO 1a 5 75 4 p-HO-C6H4CHO 5 1a 81 5 Cyclopentanone 1a 5 98 6 Cyclohexanone 1a 5 95 7 PhCH₂CH₂COCH₃ 1a 5 96 8 CH3COCH2COOC2H5 11 75 1a 9 trans-CH₃CH=CHCHO 1a 5 75 $(CH_3)_2C = CHCOCH_3$ 10 1a 6 76 11 $n-C_5H_{11}CHO$ (CH₃)₂C=CHCH₂Br 5 80 12 Cyclohexanone trans-CH₃CH=CHCH₂Br 6 87 trans-CH3CH=CHCH2Br 13 n-C5H11CHO 86 6 (54:46 threo/erythro)^C 85 14 $n-C_5H_{11}CHO$ trans-PhCH=CHCH₂Br 8 (58:42 threo/erythro)^C 15 p-CH₃C₆H₄CHO trans-CH₃CH=CHCH₂Br 7 78 (67:33 threo/erythro)^C (a) Satisfactory IR, ¹HNMR, MS and elemental analyses are obtained.

(b) Isolated yield after flash column chromatography or distillation.

(c) Determined by ¹HNMR (600MHz).

References:

- 1. Shono, T; Ishifune, M; Kashimura, S. CHem. Lett. 1990, 452. and refereces cited therein.
- 2. Courtois, G. and Miginiac, L. J. Organomet. Chem. 1974, 69, 1.
- 3. Katzenellenbogen, J.A. and Lenox, R.S. J. Org. Chem. 1973, 38, 326.
- 4. Barbot, F. and Miginiac, P. Bull. Soc. Chem. Fr. 1977, 113.
- 5. Wilson, S.R. and Guazzaroni, M.E. J. Org. Chem. 1989, 54, 3087.
- 6. Petrier, C. and Luche, J.L. J. Org. Chem. 1985, 50, 910.

(Received in China 30 September 1992)